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Abstract—A solution approach for the general problem of erosion by liquid or solid impact is
demonstrated for a simplified attack process where impact areas. e.g. craters, of one size only are
generated on the target surface. The erosion process is characterized by the specific loss of material
(per impact) which is considered to be a random variable, the mathematical expectation of which
as a function of time (“erosion curve”) is calculated. Based on the statistical nature of the repetitive
loading. the individual impacts are classified according to their effectiveness in removing target
material. This effectiveness is measured by the probability PyY,,. to hit, at the Nth impact, as an ith
repetition the same neighborhood, e.g. the same crater, on the target surface. The present solution
procedure is an extension of that used in Burgmann [International Journal of Theoretical and Applied
Fracture Mechanics, Yol. 6, pp. 207-215 (1986)] where the probabilities had been calculated, for
the carly impacts, via so-called crosion-process configurations, the evolution of which had been
shown to be Markov. In the present solution procedure, the general solution for the probabilitics
18 given in closed form, for any time ¢, and the deterministic calculation of the corresponding values
of specific material loss, based on tmpact dynanies, is outhined. It is demonstrated by an illustrative
example that the approach is capable of realistically capturing the time-behavior of the erosion
curves for both ductile erosion processes and those governed by fatigue.

I INTRODUCTION

The problem of erosion of a target surface due to liquid impact, solid impact, or cavitation,
is a truly interdisciplinary problem as it requires combined cfforts in material science, as
well as in fluid dynamics and sohd mechanics. Exceellent picees of work have been advanced
over the last 60 years, mainly in the areas of material science and fluid dynamics, but it
appears that the necessary effort in solid mechanics so far had not been made. A typical
surface subjected to erosion, i.c. to loss of target material due to continuous bombardment,
is presented in Fig. |,

The problem of erosion, for example by liquid impact, involves a wide variety of
matcrial, solid mechanics and fluid dynamics parameters. When fatigue and brittle failure
can be excluded, the erosion process is ductile and during an incubation period shows
complex details of grain boundary delincation and plastic depression of individual grains
below the original surface level, finally leading to a general, fairly uniform undulation of
the surface and the formation of small, smooth-edged pits. This has been described in
detail by Vyas and Precce (1974). Towards the end of the incubation period, the general
undulations which may be considered as resulting from the combined pressure pulses of a
large number of collapsing bubbles, or from impinging drops, develop into crater-like
depressions with large smooth lips.

Material loss is considered to occur from the lips of the craters by ductile rupture (Fig.
2), and again those pressure pulses may be considered responsible for it. A marked time-
dependence in the material loss rate is observed. The change of surface topography as
erosion proceeds and its feedback to the hydrodynamic loading (e.g. trapped gas and/or
liquid at the bottom of deep craters; changes in impact angle) are considered to be major
factors. Another factor may be the change in material behavior due to repetitive impact
loading, i.c. work hardening may play a role. For example, an average increase in surface
hardness by a factor of two has been reported and almost a cubic dependence of erosion
resistance on hardness (see Brunton and Rochester, 1979). All these changes are likely to
make removal of ductile material far more effective while erosion proceeds through the
layers very close to the surface, i.c. at the early stage (after a possible incubation period).
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Alternative, but analogous considerations apply to matenals prone to futigue and
brittle failure.

1.1. Erosion curves

Erosion is frequently characterized by so-called “erosion curves™ (Fig. 3). which show
the so-called “erosion rate™ as a function of time. Turbine manufacturers are usually
interested in the integral of this curve. i.e. in the area under the erosion curve, as they incur
major penalties as soon as the total material loss over the component lifetime exceeds a
critical value. Researchers are interested in the character of the erosion curve itself, the
discontinuous time-dependence of which, however. they usually smear out from the begin-
ning. They should be interested in the true character of this curve, involving step-size
changes in the material loss (specific losses of material) at discrete points in time.

Since Honegger's (1927) experiments it has been known that erosion by liquid impact
does not develop at a constant rate. Honegger presented “erosion curves”™ which exhibited,
after an initial incubation period. a phase of increasing crosion rate (acceleration). followed
by a phase of decreasing rate (deceleration). He carefully explained the physics of erosion

As long as the surtuce is smooth. it offers no hold for the impinging drops of water and the water flows
off on all sides. Therefore, erosion does not occur for some time. However, as soon as any roughness forms,
erosion develops rapidly because the water penctrates the unevenness of the surface at a high pressure due
to the impact, and acts very violently. Finally, when the crosion has attained a considerable depth, a layer
of water adheres to the now completely roughened surface. This water dampens the impact of subsequent

drops so that their destructive action is diminished. The specific erosion consequently decreases after a

certain depth has been reached.

Honegger's explanation is essentially the same as that put forward in recent pub-
lications on the crosion under drop mmpingement, at least for ductile materials. Even
today, opinions differ about which stage in the erosion process is the most important. The
quantitative prediction of the crosion curve still remains the principal objective of the
rescarch eftforts which aim at establishing admissible, not overly conservative (hydro-
dynamic), loading conditions.

1.2, From empirical art towards prediction

The theoretical approaches advanced so far for the quantitative prediction of the
crosion-rate time-behavior were essentially based on ad hoe assumptions characterizing
overall effects. Practically none of them examined or modelled the actual physical occur-
rences in a more specific way, so they do not lend themselves to further physical refinement.

Heymann (1967) considered the lifetimes of the top surfuce and subsurface layers as
random variables with assumed probability densities. These densitics were supposed to
reflect all statistical aspects of the erosion problem. The approach is self-consistent ; there
is, however, no direct way of making a physical refinement.

The fundamental reasoning in Thiruvengadam and Rudy's (1969) theory is, in a sense,
a vicious circle. His “efliciency™ of erosion, introduced as a premise. is very closely connected
with his “intensity™ (or rate) of erosion for which he draws his conclusions. In a way, he
thus gives as proof the assumption from which he starts.

Springer (1976) assumed from the outset that the erosion rate is constant with time.
His model comes down to the assumption that shorter incubation periods correspond to
higher subsequent erosion rates. In many situations this may indeed be a valid assumption
for the acceleration phase if an incubation period exists.

The mathematical approach recently advanced by Noskicevic (1983) definitely takes us
outside the discipline of physics. Notwithstanding numerous allusions to concepts of rigid
body dynamics, viscoelasticity and damped vibrations. the whole approach is still a curve-
fitting exercise in elementary geometry.

Of course, the general problem of erosion is extremely complex. The particular shape
of the erosion curve. for example. depends on the material and (geometric) surface con-
ditions of the solid structure. as well as on the type of (thermo- and) hydrodynamic impact
loading. It is obvious that complete, analytical solutions to this general problem cannot be
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Fig. 3. “Erosion curves™ ; typical erosion rate versus time curves according to different investigators.
(After Preece, 1979.)

expected. and an approximate numerical solution is extremely time-consuming and expens-
ive, even with the simplest of assumed material behavior and failure mechanism. Exper-
imental studics also are dithicult, time-consuming and expensive.

1.3, The mechanics of erosion

It thus remains the hope that, on the basis of preliminary experimental cvidence, a
highly simplificd approach is feasible which still contains the essential features and provides
some basic insight and uan understanding of the controlling parameters. With a consistent
sct of concepts it is then possible to gutde the experimental work nceded ; to check, in
principle, the results of computer calculations; to advise on the choice of appropriate
materials and finally to define the admissible (hydrodynamic) loading conditions.

Thus, the purposc of this paper is twofold. First, we present the general formulation
of the problem of erosion in the context of continuum mechanics. This problem is, in
principle, a coupled problem of both an attack process and an erosion process, and knowl-
edge of the details of these processes will, in general, be obtained only in a statistical manner.
Sceond, for the particular, practically important situation where both attack process and
¢rosion process may be decoupled, we outline a theory which gives an approximate solution
for the erosion process and predicts the mathematical expectation of the erosion rate, i.e.
the expected specific erosion, as a function of time (“erosion curve™). This theory is based
on the statistical nature of the repetitive attack process of bombarding over an extended
target surface, quite similar to raindrops on the roof, and employs a classification of
individual impacts according to their effectiveness in removing material. The specific loss
of material (per impact) is considered to be a random variable which takes on different
values depending on the order of repetition of impacts at the same location on the target.
In the case of a ductile erosion process, for example, we assume that the early repetitions
of the impact loading are most effective for the removal of material. The solution exhibits
the fundamentally stochastic space-time-dependence of erosion. Thus it finally remains,
apart from a fluid dynamics aspect of the general problem, a matter of classical solid
dynamics, clastoplasticity, and fatigue, to determine, for a given impact, the deterministic,
specific loss of target volume.

2. THE GENERAL PROBLEM OF EROSION

The general formulation, within the context of continuum mechanics, of the problem
of erosion, has been presented by Bargmann (1988, 1990). It is important to have the general
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setting of the pluridisciplinary problem in mind. when making the various simplifying
approximations in developing the theory and the solution procedures, in order to understand
clearly what is going to be neglected and what we would really like to see.

In constructing a general theory of erosion of a solid target, under general conditions
of liquid impact, solid impact, or cavitation, we define the history up to time t of un attack

process by a sequence of fields of surface tractions (“impacts™). V= 1,23,

6" =0, (r.t\). 1y <1t (n
defined over a sequence of space x time-neighborhoods on the surface of the target(Fig. 4),
UM =00 (e ) x UNey) = (v e)inve Uy (r) & ey e U (1)) (2)

where

ry = f{(NV), Py = (b(N) ty =‘(/(.\'). Ty = 'jf(\’) (

-
—

depend on the number N of attacks. These neighborhoods may overlap. We then associate,
to each attack process an erosion process, defined by both a material separation. which is
an equation assigning a time-varying material surface S(¢) within the original target body,
hence the portion ¢ (1) of the target body which, up to time ¢, has been separated (“been
lost™).

FYYR 1) =0, 4)
and an intact motion, at any time ¢,
t =" (R tor ) = o) = e(1). (35)

which is the motion of that portion ¢"'(1) of the original target body ¢(¢) which, at time ¢,
remains sull intact, i.e. which has not yet separated (not yet “been lost™), The material
surface (1) just defines that portion, and its history up to time ¢ contains the sequence of
spatial neighborhoods U} (ry).

Since an attack process, for a given structural target configuration and for given
parameters of the undisturbed operation (which in the case of liquid impact or cavitation
are hydrodynamic parameters like flow velocity, pressure, and air content away from the

- G?n')(r'N-t'N)

vin{t)
Fig. 4. "Attack process™: sequence of surface tractions acting on i sequence of space x time-
neighborhoods on the target surface. The associated “erosion process™ is defined by the motion of
that portion of the target body which, at time ¢, has not yet been separated.
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target surface), is usually determined by very complex, multiphase, thermomechanical
and fluid-structure interactions, it cannot be expected that it could be described in a deter-
ministic way, not even for deterministically prescribed target configurations and operating
conditions. The attack process and the erosion process are space- and time-dependent
stochastic processes (see Bargmann, 1985, 1986).

We may then state the general, coupled problem of erosion : for initially given geometric
and material parameters of the solid target, and for given hydrodynamic parameters of the
undisturbed operation (or for given mechanical parameters of the undisturbed incoming solid
particles), to determine both the stochastic attack process and the stochastic erosion process.
at any time t.

Fortunately. in engineering practice. a complete description of both the attack process
and the erosion process is neither necessary nor even desirable. Only certain global features
of the erosion process will be of interest, and a number of simplifying assumptions may
readily be admitted. Thus one is interested in the total volume v*(¢) of the target sub-body
that has separated up to time ¢, for a given original target configuration, and for an attack
process corresponding to operating conditions.

Frequently, the problem may be simplified by decoupling the attack process from the
associated erosion process. We may then state the first problem of erosion as follows: for
initially given geometric and material parameters of the solid target. and for given
hydrodynamic parameters of the undisturbed operation (or for given mechanical parameters
of the undisturbed incoming solid particles). to determine the stochastic attack process, at
any time t. The second problem of erosion may then be stated : for a given stochastic attack
process, 1o determine the stochastic erosion process, at any time t.

2.1, Prediction of the ¢rosion curve

As to the experimental crosion curves, it is important to note that what we really
measure arc realizations of a stochastic process, the specific loss of volume v being a
continuous random variable, depending on time 1. The most important characteristic
parameter is the expected value or mean u(N) of this specific loss of volume v, as a function
oftimer=1,, N=1,2,3,...,

o

W(N) = E{v;N} =J- ep(v; N)dv = ) v,p,(N). (6)

From the physical point of view, we need a classification of the individual attacks or impacts
according to their effectiveness in removing material. For a numerical evaluation it may be
convenient to approximate the continuous random variable v by a discrete one such that
the problem is reduced to determining the weighted sum of discrete values of specific losses
of volume v; (eqn (6), part 3). It will turn out that this sum is much eusier determined by
interpreting it as a weighted sum of discrete probabilities p,. We shall thus start with
suggesting a certain classification of the individual attacks or impacts, according to their
probabilities p,(N) which may change with the number N of impacts, and only afterwards
determine the corresponding values of specific losses of volume v;.

3. SOLUTION PROCEDURE. PART I: THE STOCHASTIC SPACE-TIME-DEPENDENCE
OF EROSION

We thus consider the specific loss of target material (volume loss per impact) to be a
discrete random variable v, taking the values v; with a certain probability p,(N). We then
need a classification of the individual attacks or impacts according to their effectiveness in
removing material, taking into account the statistical nature of the repetitive impact loading.
Various types of classification are conceivable. We suggest a particularly simple, approxi-
mate classification of the individual attacks or impacts which appears to be supported by
experimental evidence. Moreover, the procedure lends itself to straightforward extensions
and physical refinement.
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Fig. 5. Target surface under repetitive impacts. The surface at the center corresponds to the

superposition of major craters (lett) and minor craters (right). In the simplified model. craters of

one size only repeatedly cover the surface, and we assume that successive craters are either not at
all or totally overlapping.

Let us consider the problem of producing impacts on a solid target (craters say. for a
sufficiently ductile material), by random, liquid or solid impingements. The actual situation
is extremely complex. Overlapping impacts or craters of various sizes may continuously
cover the entire surface (Fig. 5). We adopt a simplified model where (i) craters of one size
only may repeatedly cover the surface layers of the target; and (ii) successive craters arc
considered not to overlap at all or to overlap completely, thus partial overlupping is excluded.

Let the probability of hitting an existing crater by a next impact be denoted by p.
Assume this probability to be constant and equal to the ratio of the area of a crater to the
arca of the target surface exposed to the attack process, i.c. cqual to the constant relative
portion p = A0 e Of target surface which is hit at cach impact. The smaller the
impinging jet or drop or solid particle compared to the size of the crater, the better this
assumption is fulfilled. It further contains the idea that wherever the crater is on the surface,
the chanees of hitting it are the same,

It will turn out that certain, essential features of both the stochastic space-dependence
and the stochastic time-dependence of the erosion process are intimately related with cach
other. Morcover, we shall see that these essential features will be particularly relevant for
the establishment of the erosion curve. Thus, having the specific loss of material in mind,
it will be not so important where exactly on the target surface the next impact occurs, e.g.
where exactly a new crater 1s formed, ete., but rather whether a new crater is formed, or
whether a first repetition of impact at the same spot occurs, cte. (Fig. 6).

Let us thus consider, at the Nth impact, the N separate events: “producing a new
crater”, “producing a first repetition™, “producing a second repetition™, ..., “producing a
(N — 1)th repetition™. These events together form the certain event. The production of a
Oth repetition is defined as the formation of a new crater.

We may then base the classification of the individual impacts on the repetitive nature
of impact loading. characterized by the probability of a repeated impact. We may choose
the probability p,(.V) to be equal to the probability of producing an ith repetition, at the
Nth impact,

piN) = P, (7)
where l’,‘;,, s = Pi.... The problem can thus be reduced to the following fundamental ques-

tion: what is the probability to attack (*'to hit'), at the Nth impact, as an ith repetition the
same neighborhood (e.g. the same crater) on the target surface?

© O OO O

Fig. 6. Erosion-process configuration with one second repetition (3 overlapping craters) and two
first repetitions (2 overlapping craters cach) after the Nth impact.
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Bargmann (19835, 1986) showed that the erosion problem can essentiaily be reduced to
this fundamental question. He introduced the concept of “erosion process configuration™
(cf. Fig. 6). and developed a general procedure for the prediction of the erosion process
itself. He noted that these configurations have the Markov property, as the next con-
figuration depends only on the current configuration and not on other past configurations.
He presented the method for the determination of the different probabilities for a repeated
impact Py, . calculated the values for N = I,...,7,i < N, and showed the general picture
of corresponding erosion curves. Indeed. Bargmann's procedure was rigorous and general
within the assumptions of his theory, i.e. as to (i) admit one size of craters only. and (ii)
exclude partial overlapping. Moreover. the procedure naturally lends itself to any refine-
ment. It was, however, cumbersome to carry out the calculations for impact numbers ¥
higher than 7. Later, Nakkasyan (1985) developed a Monte Carlo program and verified
Bargmann’s solution. Her program was then used by Lahlou (1988) for the calculation of
the solutions up to N = 100.

Looking at these results, Bargmann then found the general answer, for arbitrary V. to
the fundamental question announced above. Thus we can now present the solution to the
problem of the approximate space-time-dependence of the erosion process. for any time ¢,
in analytical, closed form. In fact, a little reflection shows that this probability must be
cqual to the probability of having hit. from the second to the (N —1)st attack. exactly
(/= 1)-times the same portion of area p defined by the (new) crater from the first attack on
the target, and to hit, at the N'th attack, again such a stack. This probability is given by

v N-1Y | Nl .
Pup, = ; p(t—=py = B(i. N—1,p). (8)

Equation (8) ts casily derived. One way of achieving, at the (N — 1)st attack, a “stack™
of i craters on a particular spot —defined by the (new) crater formed by the first attack —
is to have i — | consccutive “successes™, each with probability of occurrence p, followed by
N-=2—(i—=1) = N—1—i consecutive failures™. Since ecach success and failure is inde-
pendent, the probability of the above sequence is obviously p' '(I1—p)¥ ' . Thus, to
achieve, at the Nth attack, a stack of i+ | craters is given by p'(1 —p)¥ ~! 7. Of course, this
is only one possible sequence that leads to a stack of i repetitions out of N — 1 attucks. In
general, the number of possible sequences leading to the desired result is equal to the

N . D N—1
number of combinations of N —1 attacks taken i at a time, which is given by < . > the
i

different attacks occurring, by definition, in the natural order. All the possible sequences
are mutually exclusive, and the derived probability is the probability of the union of these

. N-1y. - ,
events. Therefore, B(r; n, p) is the sum of the ( ; ) identical probabilities p'(1 —p)¥ =1~/

which is of course eqn (8). We note again that (8) is valid for any N, i < N, hence for any
instant of time ty, and p = A npa/Aurge i the probability of “hitting the same area (or
crater)”, as defined above.

3.1. Erosion curves

To illustrate the essential dependence of the probability of a first repetition on the
number of impacts, let us choose for the probability of hitting an existing crater the value
p = 0.5. This rather high valuc for p allows us to exhibit the typical time-dependence already

during the first few impacts. The corresponding valucs for the probabilities Py.,. P, .

wp 2+ Piep 3. €tC., are given in Fig. 7. (Note that the smooth curves are valid only at the
discrete points ¥ =1,2,3,....)
We immediately observe that a weighted superposition of these probabilities PL...
1+ Prs 2, Pits 3. etc., results in the typical shape of an erosion rate versus time curve, the
number N of impacts being taken as the measure of time (Fig. 7). e.g. the upper curve

(032111...).

SAS 29:14/15-8
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Thus all we have to assertis that the specitic loss of volume, ¢.g. ry for a first repetition,
is much greater than some average spectfic loss ¢ tor the higher repetitions: for a very
ductile material, this is amply justified throughout the literature. We note that the upper
curves in g, 7 exhibit all the stages usualdly found in crosion curves : an incubation period,
an acceleration phase, a deceleration phase and a final stationary stage with constant erosion
rate.

It is natural to ask how the shape of the erosion curve will be influenced by the higher
order repetition probabilitics. The values for the probabilitics P, 1. P10 Py 4. Cle., are
given in Fig. 7. Again, we observe that weighted superpositions of various Py, results in
shapes which are typical for erosion rate versus time curves as reported in the literature.
Note that the upper curves (032 111 .. ) cte.cin Fig. 7, represent the relative expected value
(measured m units of u corresponding, stationary, expected value £) of the specific foss of
volume, at the Mth impact henee at time £ ef. eqn (6) part 3, where ¢, denotes the specific
loss of volume for an ith repetition. The curves in Fig. 7 were generated by using the
numerical values for the relative effects of the different repetitions as given in Table 1.

Finally, we note that egn (6) part 3 also allows for the general case where ¢ # 0. ¢
denoting the specific loss of material when a new crater is produced. It has been observed
in certain, less frequent, cases that the crosion curve starts with @ maximum value, without
an acceleration phase ; this could correspond to a significant volume loss even when a new
crater is formed (see Heymann, 1967).

4. SOLUTION PROCEDURE. PART [ THE SPECIFIC LOSS OF MATERIAL

We have assumed the specific foss of material v (volume loss per impact) to be a
random variable which takes on different values depending on the order of repetition of
impacts at the same location on the target. The approximation cgn (6) part 3 of the expected
value p( V) of the specitic foss of material, atany time r = ¢, V=1, 2.3, .. can then be
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Table 1. Specific losses of volume ¢, i = 0. . 2...., relative to the standard
situation of a constant value £ being lost at each impact

Ly '1 ': Uy Uy Uy '1 ‘i_’_

Curve c 3 r T r I I3 I3
(032111..) 0 3 2 1 1 | [ 1
Q2 111..) 0 2 1 1 1 | 1 {
(0004 0004 .. ) 0 0 0 4 0 0 0 4
(003003..)) 0 0 3 0 0 3 0 0

The four different curves (032 111...), (021 111...). (0004 0004...).
(003 003 .. .). correspond to four different influences of early repetitions. hence
to four different materials (cf. Fig. 7).

interpreted as a weighted sum of either discrete values of specific losses of volume r,, or
discrete probabilities p;. The solution exhibits the fundamentally stochastic space-time-
dependence of erosion. In solving the problem of erosion, it thus remains a matter of classical
mechanics : fluid dynamics. solid dynamics, elastoplasticity, and fatigue, to determine. for
a given liquid or solid impact, the deterministic, specific loss of target volume.

4.1. A typical first problem of erosion

In solving the first problem of erosion, i.e. in determining the general, stochastic attack
process, at any time ¢, an important step is the deterministic specification of typical surface
tractions acting on the target body. Let us illustrate, for the important problem of erosion
due to cavitation, the type of work to be encountered.

[t is well known that, whenever a changing ambient pressure in a liquid falls below a
critical value, roughly equal to the vapour pressure, the appeariance of cavities oceurs, If
the pressure in the neighborhood of the effectively vacuous cavity rises above the vapour
pressure again, the cavity collapses. When the violent inward motion of the collapsing
cavity has come to arrest due to the rising pressure of the gas and vapour in it, a high
cnergy density has been gencrated in a very small region around the center of the cavity.
The energy stored will create an outward-going motion, the cavity starts to rebound. In the
carly stages of rebound of a spherical cavity (after collapse has come to arrest) an outward-
going shock wave may be formed.

We may assess in a simple way the order of magnitude of the shock strength that could
be expected, employing Taylor’s (1941) self-similur motion type theory for strong shocks,
upon the assumption that the total encrgy carricd by the wave remains constant. This
should give approximate results at distances from the center where the details of collapse
arrest no longer influence the wave shape but where the shock is still strong (i.e. that we
may still neglect the pressure ahead of the wave compared to the pressure behind the shock
front, p » p,). [t is a remarkable fact that just for the fluid water the problem admits a
closed-form solution. There is a strong attenuation of the peak pressure as the shock wave
moves outwards but there are high pressure values at the early stage of rebound confined
to a smali distance around the center of collapse. For the peak value, at the shock front
r = ¢, we have, at any time ¢,

Pudpo = 6(Ro[)", )
where R, is the initial radius of the cavity and the motion of the shock is given by
r=2§(1) = (150poRq/po) " *1*%. (10)

The result is exact in the limit of a strong shock, p » p,. and of an energy deposition taking
place instantaneously, at time ¢ = 0, at the origin of the sphere. We note that p, occurs only
in the combination p, R} = (3/4n)E, as the total energy.
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Thus, for an outward-going strong shock wave running into water under a pressure
P, of about an atmosphere ahead of the wave, the maximum pressure at the shock front
reaches 6000 atmospheres when the shock front has reached 0.1 of the initial cavity radius
R, (say ~ R,,. the maximum cavity radius, prior to collapse). For Ry = | mm. the time of
0.026 us elapsed from the start of the rebound. the water velocity at the shock front being
380 m s~ ', the shock speed 1540 m s~ ', and both velocities and peak pressure would be
attenuated (the pressure as strong as 1/7°) as the shock wave expands further (Fig. 8).

It is well known that reflection of strong shocks results in a considerable increase of
the pressure at the wall. As a reminder. we note that for the reflection of a one-dimensional
strong shock at a (rigid) wall the pressure ratio is given by

piip~34 (i)

for water, where p, is the pressure transmitted to the wall and p corresponds to p, from (9).
[t should be noted that the actual situation in problems of cavitation is of course much
more complex : cavities close to a solid wall, in the very final stage of the collapse typically
lose their spherical shape and microjets are formed. Brunton and Rochester (1979) have
concluded from high speed photographs of single, involuting bubbles that pressures of the
order of 5000 atmospheres would be generated when the jet impacts the opposite side of
the bubble (for a detached bubble). and nearly twice that value if the bubble is attached
and the jet impacts the solid surface dircctly. Nevertheless, (9) and (11) clearly indicate that
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Fig. 8. Variation of pressure with distance from the collapse center at a particular instant in time
during the rebound of the cavity. Attenuation of peak pressure with distance and time. The number
attached gives the time clapsed from the start of the rebound, expressed in units Ry{poip,)' 7 of the
order of the collapse time, for a cavity with initial radius R, = | mm, The analytical result of the
simple blast wave theory is compared to numerical results of both 4 theory where evaporation and
condensation as well as heat conduction were taken into account (see Fujikawa and Akamatsu,
1980). and a theory based on the assumption that the so-called “kinctic enthalpy™ along an outward-
going characteristic is inversely proportional to the distance from the center (Kirkwood-Bethe
assumption, see Hickling and Plesset, 1964).
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the intensities are sufficient to cause micro-craters of dimensions of the order of a grain size
in typical metals and corresponding localized material loss.

4.2. The second problem of erosion

In solving the second problem of erosion, i.e. in determining, for a given stochastic
attack process, the stochastic erosion process, at any time ¢, we are then faced with the
typical matter of classical solid dynamics. elastoplasticity, and fatigue: to determine, for a
given impact, the deterministic, specific loss of target volume.

For a ductile erosion process, it is reasonable to assume that the early repetitions of
the impact loading. e.g. i =1, 2, 3,..., are the most effective ones for the removal of
material. Thus, when a crater of volume v, has been formed, without loss of volume say,
we may suppose that a repeated attack will lead to a specific loss of volume v; which will
be some portion f; of the volume of the crater rim, assumed to be equal to the crater
volume, in accordance with the classical assumption on plasticity,

v~ fr. 0<f <l (12)

for the early repetitions i = 1,2, 3,....

A number of solutions are proposed which may be used for the assessment of the
crater volume v., depending on the type of the attack process. For slow speed impact, for
example, the simple formula

vft, ~ spui Y, ¥ ~3Y (13)

may be used, where v, pp and u, denote volume, mass density and velocity of the incoming
particle, and Y is the yicld strength of the target material (see Johnson, 1972).

A gucss for the portion f, might be a few per cent. A more precise value may either be
extracted from experiments or may further be derived on physical grounds, employing
particular assumptions on the kinematics and dynamics of the incoming attacks.

For hypervelocity impact, an expression for the volume v, of the penetration at normal
incidence that an incoming jet of given volume r; and mass density p; can achieve in a semi-
infinite target of density p is casily found by using a hydrodynamic model,

vfv; ~ 2/ (p;lp)- (14)

At these high velocities, the pressures created during the impact are assumed to be so high
that by comparison static yicld strength is altogether negligible, and both jet and target
behave like fluids.

For an erosion process governed by fatigue, we may assume that some portion a’ of
volume, related to the area of attack of the order of @?, is lost whenever a typical number
of cycles, i.e. impacts on the *“same spot”, e.g. i = (1, 2, 3,...) x 10", typical values for n
being 4, 5, or 6, has been reached,

v ~d, (15)

e.g. for / = 100000, 2007000, 300°000, .. .; and v, = 0 otherwise (see e.g. Johnson 1987 ; and
Hertzberg, 1989, for more details).

5. CONCLUSIONS

The general theory of erosion of a solid target by liquid or solid impact has been
presented, employing the concepts of coupled, space- and time-dependent stochastic attack
and erosion processes introduced by Bargmann (1988).

A solution approach for the decoupled problem of erosion has been demonstrated for
an attack process where impact areas (e.g. craters) of one size only are generated on the
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target surface. The erosion process is characterized by the specific loss of material (loss of
target volume per impact) which is considered to be a random variable, the mathematical
expectation of which as a function of time (“erosion curve™) is calculated. The statistical
nature of the repetitive loading s crucial. as it allows the individual impacts to be classified
according to their effectiveness in removing target material. This effectiveness. introduced
by Bargmann (1985, 1986). is measured by the probability Py, .. to hit, at the Nth impact.
as an ith repetition the same neighborhood (¢.g. the same crater) on the target surface.

In the present solution procedure. the general sotution for the probabilities is given in
closed form, for any time . and the deterministic calculation of the corresponding values
of specific material loss is outlined. It 1s demonstrated by an illustrative example that the
approach is capable of realistically capturing the time-behavior of the erosion curves for
both ductile erosion processes and those governed by fatigue: it exhibits an incubation
period. phases of ucceleration and deceleration, as well as a final stationary stage of a
constant erosion rate.

Acknowledgement-—The author s grateful to Alice Nakkasvan for having developed a Monte Carlo program in
1985 which enabled him to verify the present theory at an carly stage
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